SQL 基本的函数

select * from emp; <img src="×5+b9xxSY7VXdqSlgBQZrh1dqreOq6rKoSzy7r6VczHmKrzUGs9pmSVlAXLtVEdGOy8gm+Ic+nnUczuwckrnaF771Qq3Rzyu6lx1uGmzOcf19vLtMmd7//XXf//Tn7OIy7KUL9N/y2PSA7IjqwcbZexk42SDZ0FLqdk4PcmpCmju3H0r51LNVXoGO6egl5YSolpa3kqQRo5VwsNv+7psPI8vRZ1Y8m/cqhFLhVkNWP51RawWm7EOm+PY87NpO5lz6MtxNlS1lzFBFgOznAOj1J7klGM+knMoOR+SvbBzSC2xa5hbtgWcI5B/44bsHM3pl4fNc4636+355XXO9v7+6+d/+1MacfnI1lL+u/8067UfUz3MLqM6bLZvEexVYlGVDZ7pCYebf6LLXJWZDE9EKa00Y1kIKaJScpL4s5wahG1fly3nUU91FZeYasT0t1XVk1vWc7XC7RGr03SV67NQ889FWTa1mZzj8nZ9ev42Z3t///VfP//7zIjIMuyqlmW5u7wjMpzOq3OOmOeUW3Xb1+XyR/PPYzWiovCgiJZtwjqwabM5x+X69ellzvb+/v4v//pvMyMiy2iq2v8HcXdtx2V41Bwxzym36ravy+WP5p/HakRF4UERm9uc1WDTZnKO18vbX78+z9lu7+///C+fZ0ZElnEKVWeZyyNl7+G3fV2u/AijchSFB0UE2TZtdA5oGadQdZa5PFL2Hn6jc8DWqsM5PhFCyET2dfneQkTwFR6KyTluc7ler5MjVgGRkYGpKsb8uTxS9h6c/dFJNSAqR1V4SEQYrteryTm+TGdZFpB/CSHz2dflewsRwVd4HFXbqDuHdOgRfPny5b/+39e7b5NnbQRTVYz5c3mk7D02kM/n+JxuicLPR2ywtQrtHMuy3N05lnt/CX4V2HoKQOcgEnQO2FqFdo672wbvOSZA5yASdA7YWoV2Dt5zSMDWUwA6B5Ggc8DWKrRz3N02eM8xAToHkaBzwNYqtHOU9xzZF5ZljeVhSkvnPUcqYy0eeJ4doLekA9qTY1eVDquryo7xqopRnUupU5+O0mKMuHevytDHt6SoOXKzVzUn1S6BnKD12l7GnGNUnQgRRecoTtBnqTFtjznHqBmF6XWO44RW7zmWxC2ynX3fckznPUd2wtaacyhHpu3ljjE5FlXVYZXQnapi6HOpKslyqLTYI67mc1cKa2apObKrl97Fohm8194ScI6BdSJE1O45UsOQdlLziN1zDJxRGJ9zZM9S3yr7iEe3v16u+vsc1R9lzlE92Osc1dNQXY6bzlFtOcg5mgL0Jak85jj0e9mZzqGMoI9vSVSsr/GcKiNb4h7dy6vwjM6x2QCdY606R/WJuAMfHpluyvscVW9Yil9eLYfdc6w1hwg7x07naXOZXCm+Op0JDF/Hy5ejIq61XJVHVs+pfnbsvfSpxdYUtF57y5DfVsV0yhHv7xyl+PCMwkA7xyKs8nr7UvOJ9LLsv+f4nxzV/pPuuvKr577JEfccestxBN510PPclD0/YvWYI3qheUCsV49zeAt7lHPsb11Mc46eauwH2jlcv6rSnWP4Pcf/pKnwjFM4h64B0zmy9mqeLZrHRjQGlc67q1ezI5oHxHrROZrOoZTT/S/binPUnhc/5IHD5Wa85yj3qz8td3ruOaRaxHGO6rCZPNfOcbjuANIdfUWYE7HaqzmyPat0jhM5h/23Vdt+2RJ4n0Oa9dFAO4fxnmP5jqul555jSdhbyn+rh5Uvy/3waZPCSWRdpJ8aVcUY+Dey1ZzbIzbHN7Y0RzbqrB7QPB1Ghd7chnuVgu1ZPdFf5S41M9hfLgZczvGxY3xGYXzOIT0v/oiH1/Mz5Aqwnw8KwE8CEgl+EhC2Vn3OMfN58fwMuQKmqhh0DiJB54CtVadzTHxePO85FGDrKQCdg0jQOWBr1eccM5+Iy3sOBUxVMegcRILOAVur0M7Bew4J2HoKQOcgEnQO2Fr1OcfMZ6PznkMBU1UMOgeRoHPA1qr3e6vmwXsOBdh6CkDnIBJ0Dtha9TnHfJZlufu/hJC7sK/L9xYigq/wOBzOMcqvLEwOJwEiIwNTVYz5c3mk7D02kPccH9AVHhERBDpHAxAZGZiqYiBc/wQTOgdsrdI5GoDIyMBUFQPh+ieY0Dlga5XO0QBERgamqhgI1z/BhM4BW6t0jgYgMjIwVcVAuP4JJnQO2Fo9mXNUvyRy/1F5mNLSIyMWsRSf7djlSaqqyfGqKscpd6SRR81FV2WZjjdiOSP7+M3JxnT+yL22l2HnCJzHWOWk35XbP74l4tjxw3Q5x6FapQUl20mVlD9a+r6OX5IhadAPWGv6pRkFVEnTtOuU0rWntyxWZZwhczFmzHWi9auxOoIyfvMSiOn8kXvtLT3fsl5GPKJyMoXNGenjWyKOHT+Mzzlut/fXy3XblmWp7o/a9FscJXcznUMfWWrJepWNMVXKtWrRqaz7inMcNJdSrZ7eIc6hjKCPf0bn6J8prHM0lZzdOVLO4Rzp02SX5DmyywHPlPX+Z3+yc1hGlpbg41bbbHC7TrslZHk+1DnKwUsB2X45l56IxvElnc3kl8Mqg1vKOFb8aL32llHO0awci/JqxOpvq8LjWyKm47hqYyxx5zj6UeTey7tZK5Y1xZ4gS0FILdXCGlVP0vguVdmR6QHVxoPmIsmWTmv4+pd6GcfX5xvrFet73Go+s9feMvyeoxlRUV6NyHuOiiSLcxxkG957DskVLC069veiY9GPcI40UExnKW8talQaeeBc7OvmQc5hHD/gHF7bMEZE84BYLzqHEjHjJM7x8Tnky2EPId+eQy4qq6VGvz5dV2yKfs8hjdwsoE5h9nfIXTp12fYpTHOOpvKeiPbxvc4RsA1jRDQPiPWicygRx44fJu4ch9pGzDnS6zx9WW3pSVA1lpdM1ZB6yqYZ0CmNU/4rjTxkLmnccoKuFnvE2PiWiGU+yyRLXaod7bGkXoHcxnqVau1Z7fnbKu9Zs+SWf5XbFLZWnePtent+ed225SN7+6gN5CMwIDIyMFXFQPg8F8GEnwSErVWfc1zerk/P3+ZsICkDkZGBqSoGwvVPMKFzwNaq0zku169PL3M2kJSByMjAVBUD4fonmNA5YGvV5xyTn0M+JQMNQGRkYKqKgXD9E0zoHLC1SudoACIjA1NVDITrn2BC54CtVZ9zfJoISMpAZGRgqoqBcP0TTOgcsLXq/d6qeYCkDERGBqaqGAjXP8GEzgFbqz7nIISQaezr8r2FiOArPA6Hc4zyKwuTw0mAyMjAVBVj/lweKXuPDe85YGuVztEAREYGpqoYCNc/wYTOAVurdI4GIDIyMFXFQLj+CSZ0DthapXM0AJGRgakqBsL1TzChc8DWKp2jAYiMDExVMRCuf4IJnQO2Vk/mHNnXLFZbVtvXfHbKyP4tQyiq+r/PUjoX1RDGr/BUpJY70sjVEIG5GE+rpcUYsZyRffzmZGM6f+Re28sh37Jejr98xK5ccY7maJbxLRHHjh+myzkO1aos2dWd8pjssJjOsHPoajuTpifHqErSWfbds1cWqzLOkLkYc9g8F82Ia8sXpfGbpRXT+SP32lt6vmXdGFE6xhixqjBcmZaIY8cP43OO2+399XLdtmVZqvujNv0Wx+sc1SMteJ1DWlyaskepqrbrecgmUj1Aco7qy/5ro1RrOdGdzqGMoI9/Rufonymsc7h06sc3I97FOcpY6M5RfQ75Qc+UtZfFjnJY+dKI625R0lZqOMI59ohZS6mq2stoCdkUDnUO/URLia0WQyyicXxJZzP55bD64FKLolk/9Zi99pZRv63KGo21ZIlYfbJTLDPGiOk4Xv0D6XWOTf19n0NebXddbwrKGl2NaCyazrNr/H+6rkE5JjsyPaDamLUMvDb0ffsaHYhoH1+fb6yXdIw3Fp3DoqffOfTRjnCOIeOHOf09R7Vd/x+HC5dzpKtMVc8c58gCSarKg6VxJOeojjzTOao6pWO8Ee3jB5zjCNuoxqJzKGJcyqsR6RwVSfpzyNNtOeCZ5AN/iVkeacd7z+HdiWF/h1wPXZqBckD14GaI2FyUGSkRhzuHcXyvcxxkG81YP6Zz6Jk8o3MMHD9M3DlSt7ijc2wvN7KX1cZRCSqXUUXAUuCVYVElzbqqSkIap/xXn2/nXNK45QRdLfaIsfEtEct8lkmWulTPixLOqDCQ21ivUqo9qz1/W6Vn2zjfZsTq+xzh8S0Rx44fxuccb9fb88vrvu1a08ZRG8hHYEBkZGCqioHweS6CCT8JCFurPue4vF2fnr/N2UBSBiIjA1NVDITrn2BC54CtVadzXK5fn17mbCApA5GRgakqBsL1TzChc8DWqs85+BxyEDBVxUC4/gkmdA7YWqVzNACRkYGpKgbC9U8woXPA1qrPOT5NBCRlIDIyMFXFQLj+CSZ0Dtha9X5v1TxAUgYiIwNTVQyE659gQueArVWfcxBCyDT2dfneQkTwFR6HwzlG+ZWFyeEkQGRkYKqKMX8uj5S9xwbynuNzuiUKPx+xwdYqnaMBiIwMTFUx6BxEgs4BW6t0jgYgMjIwVcWgcxAJOgdsrdI5GoDIyMBUFYPOQSToHLC1SudoACIjA1NVDDoHkaBzwNbqyZyj/NrLgV+EaZehK0kPKI+UpLq0KclJd/Z26ZhUhjRBfbKBlNrnIuWqKlJqMUbcu1dl6OM3kyCp0jvGZvcYvbaXQ74rt2xZPlJtkSOKzlEM8llqTNtjzhHL/EAGOMdBWqUFRdqxHBOQqvtldWSLgL1ey15hVdllII2sa/ZOwau8JHCipewZ86lfjdURlPGbl6syptIxNrvH6LW3BJzDNb63hpv3HKlhSDupecTuOcKVPxCfc9xu76+Xa7pt1Z81DtkCS7a9xU6nc1QrtX/N9TpH9aV0TFWVvnTGZrHRk2GLPFfEgHPosaQjywGbvcau5v0zPa9zlC/7nWOzATrHWnWO7Gmyy7Ic9ChZ+9NklwR7y5AErULl6c6hL+s9qtJwygpVVSXNJetVzbxXvGUuVSXViOVkq30DEZVzKi1A68diU65qqTD0Xs2plb0sOUHrtbf0vM/RrArprCljgjiHfY7HcXrnKNtjBS3R/9uqcmkrNQxRlQ6uRGyqqq6SltzG6FnHyxbLEhDwKr2Q9CQoSXN5QGcspS9ar37n0M+jXWEtYuN9jmnOEauQUcSdYzcMOocUQlqj9aHCqiTnyK6Zqqrm+qgv1nblxrmUIxudQ2nxRizbR63mq8HhjGeh2esHdA7jVXZq58hEwjtH8hzy7fHjO/d6DrmrEFd/Ws/1Dnk58sydGGPfdbCocv1ftRlRj6Uf6VrjLHlG84BYrx7nqMbVr1Oj8rXlHPbfVm37ZUvgfQ6X/oF0OcfuH8Ntw+4ca/LfN1dLT4KkQkxDpC/3f1OyllGqyoiZnqqq9Bhpv6o8OzLA/BPd85eOsYjSMXrHrFd5FsKzWEO5jfWSZm3Jasw5yizF5iJENL3PUd6CNHE5h3GOx+Fzjrfr7fnlNds2uWV75wbyERj9zM3XswGSnCHwk4BEgp8EhK1Vn3Nc3q5Pz9/mbCApA5GRgakqBp2DSNA5YGvV6RyX69enlzkbSMpAZGRgqopB5yASdA7YWvU5B59DDgKmqhh0DiJB54CtVTpHAxAZGZiqYtA5iASdA7ZWfc7xaSIgKQORkYGpKgadg0jQOWBr1fu9VfMASRmIjAxMVTHoHESCzgFbqz7nIISQaezr8r2FiOArPA6Hc4zyKwuTw0mAyMjAVBVj/lweKXuPDeQ9xwd0hUdEBIHO0QBERgamqhgI1z/BhM4BW6t0jgYgMjIwVcVAuP4JJnQO2FqlczQAkZGBqSoGwvVPMKFzwNYqnaMBiIwMTFUxEK5/ggmdA7ZWT+Ycli+JrB6z/2igjHSnHF/RmXUvW8pJWVRVg0qqql2qUl3zbSo3zkVXZZmON2I5I/v4zcnGdP7IvbaXw5/slL2sNirKFeeodrTM0RuxZ7SBxJ2jmv2jlaWnublT9g3oDDtHKan819LLpaq5Xx22qjNrCczXyJAT3cxqM+La8kVp/GZdxXT+yL32lvCTneznUTrGGFFxjlTG2FoNjzYQn3Pcbu+vl+u2Lcuy7x+x6bc4yiJVTZxUMU28ziEtLoq8cv1tqm3WU3VAXYCeUuN8A3kecqKHOIcygj7+GZ2jf6awzuHSqR/fjCg5h3JNjarVwGgD8TlH9WmyB232stiRWla5YmIJqq6k1VOYyahqKA9oqjX+b0tSVe1ltITmfHXl9rlUBy8FZPvVnIcjGseXdErJr7ZU61Ya3K5fP/WYvfaWUb+tyhqNtWSJeEfnCOgfSJdz7NzXOar7aUs1v0aU/91XB9dLRBFZ9orVU1NDM0vlkd75uvI8ZB0feDVmLy3j6/O1KHf1VSIet5rP7LW3DHQOXc9Y5ygXnCOcIzDaQOLOkW5HmMdA51jNF6oxQdJKmoVQ6kaaTjpsfz3pqhRJpZjVPF9vko/4L0L1GG9E+/ix1b/Zt1oYFp0Wzci9hjuHscKbB7vuOdKr44d3jtpzyA96FPnwX0aXLy147zn0naoGSaS3nqpRLGLKpb96QGy+TTrvOXTlPRHt4weco5krvU7O4gGxXmOdw5LJ4c6RDTXWOcKjDSTuHKlb3NE51sTelZa0vT9B1fU0rZKU9KeZMOnIshqMqqrjV2NJSON452vN7+i/kS1b7BFj41siBnqVWR0bK5DbWK9SrT2rPX9bVSZNz6Qlt7pzSDMdG7FntIH4nOPtent+ed23XWvaOGoD+QgMiIwMTFUxED7PRTDhJwFha9XnHJe369PztzkbSMpAZGRgqoqBcP0TTOgcsLXqdI7L9evTy5wNJGUgMjIwVcVAuP4JJnQO2Fr1OQefQw4CpqoYCNc/wYTOAVurdI4GIDIyMFXFQLj+CSZ0Dtha9TnHp4mApAxERgamqhgI1z/BhM4BW6ve762aB0jKQGRkYKqKgXD9E0zoHLC16nMOQgiZxr4u31uICL7C43A4xyi/sjA5nASIjAxMVTHmz+WRsvfYQN5zfE63ROHnIzbYWqVzNACRkYGpKgadg0jQOWBrlc7RAERGBqaqGHQOIkHngK1VOkcDEBkZmKpi0DmIBJ0DtlbpHA1AZGRgqopB5yASdA7YWj2Zc4S/9jL8RZJNGfr4koalxhBV68dv6KxqKAVXlUtqqxkIM/9Ea0U/4htklekos2v2isWSxgHvtb0c8l25ZUs1/xblunMUw36WGtP2mHPEMj+QLuc4VKu0oNh39v2ypVNGM64Uzig7pmo/F2VJ6RpiOmPKS7wnepVPq/FE61djdQRl/OYloI9j79UfS+qL1mtvCTiHt06kXnJE7Z5jdwJlJzWP2D3H2CUuhs85brf318t125ZlyXbGbvotjrJsoTlHrJQDqhTnqL6UjlEsUFrOXOIzAidaOumdzqGMoI8/zTk6Y9n3x/byKjyjc2w2MMc5SuXozpE9h/yIx48Hnia7U/1pdtioBJUDGpez7LCYMLtzKBqkYyTnKOcbS6llLlUl1YjNUx+OaC8kqSCVlass2mav5rykWM2+aL32lp73OZRarea/qXwFc46A/oF0OcfOfZ2j3DdehD0JKs9ZOXLzwqi2hFWlQ2WqpMWrekyZxoHKjXPJlCj7kubW9d+OWI5m12OZhd53VCxLX7Ree8vwp8naL1I5YuN9Dt5zOO45jjCP+WVRpdM5slVs1Gl2OYekQTqmKk9frANT0OdSjuxdf4c4R9ZO55jTq9M5stB0jiNwOgfec8j1Ze5ezlEu3/adsCrJOabtxBj7roNFleueoxlRj2VX3uw1M9Z5nUP35mZERfnacg77b6u2/bLF6Bxh/QM5vXNsL7+7vaOlJ0FLQtnS/Kl0fL+q8l9dQ/UYab+qPzsywPwT3fOXjrGIgL0CuY31KtXasxpzjhRvRD239vc5yluQJq57jpj+gfic4+16e3553bdda9o4agP5CAyIjAxMVTH4SUAiwU8Cwtaqzzkub9en529zNpCUgcjIwFQVg85BJOgcsLXqdI7L9evTy5wNJGUgMjIwVcWgcxAJOgdsrfqcg88hBwFTVQw6B5Ggc8DWKp2jAYiMDExVMegcRILOAVurPuf4NBGQlIHIyMBUFYPOQSToHLC16v3eqnmApAxERgamqhh0DiJB54CtVZ9zEELINPZ1+d5CRPAVHofDOUb5lYXJ4SRAZGRgqooxfy6PlL3HhvccsLVK52gAIiMDU1UMOgeRoHPA1iqdowGIjAxMVTHoHESCzgFbq3SOBiAyMjBVxaBzEAk6B2yt0jkagMjIwFQVg85BJOgcsLV6Mucovwgz/NWYPTKyuMr4VQ1VnS55SnLKoUoNpeCqciXJ5VzCGE90qdnYYoy4d6/K0MdvJiGm80futb0MP5+jqmEpCik9zKJcd45i2M9SY9oedo6lVauHEneOavaPVpae5ubOvl+2jJIhxZXCGWWHVe3zVaasJMqlM6a8xHuiV/m0Gk+0vuJUR1DGb9a/Mo7SMTa7x+i1twx5Dvm+r6TdUznaPcfuBMpOah7he45mrR6Nzzlut/fXy3XblmXJdsZu+i2Ocu4nO0ezUbeZUmGPKsk5qi/t11VV56HOoUeRzn6ncygj6OOHnSPcq38175/piZyjadj9zrHZwDTnUDQjOkf6NNlDHyVrf5pstWX5TrNjkx7nkBZoZVnvVFU6h2IS9utKUd5fpp334+Vkq30DEaU1qKqhFFnmeU1SnY1j7NWc3WP02lt63udQhq3mv6l8pXMk9DrHcoxt9DjH2IQOd45mS6eq8iKRIkrHVFfJUcqNc8mUKPuS5tb1345YjhYrrVErbKnnuFhndw4pe9KR/c6xFg8BpHOs6/mdI5zNTufIrnNp51DnqGrIWprro75Yu8Rb5lKOrF8blhZvxLL97s4R6PUDOoflSgwoX+kcCU7nSJ5DftwTyL3PIV9bSexJZewd8nL5tu90quoJ3bkTY+y7DhZVrnuOZkQ9ll15s1d156BY53UO5VxYLlV9hFHvkG/7ZQud457OsSb/xcheVv/TEUuQHqIpQGrpUZVeA+WY1YjVY6T9qn6vcuNc0hmlL7NYlhZ7xNj4loiAvQK5jfUq1dqzGnOOlPJHrvnWIpre5yhvQZq4nCOmfyA+53i73p5fXtNtWZasZdQG8hEYEBkZmKpi8JOARIKfBIStVZ9zXN6uT8/f5mwgKQORkYGpKgadg0jQOWBr1ekcl+vXp5c5G0jKQGRkYKqKQecgEnQO2Fr1OQefQw4CpqoYdA4iQeeArVU6RwMQGRmYqmLQOYgEnQO2Vn3O8WkiICkDkZGBqSoGnYNI0Dlga9X7vVXzAEkZiIwMTFUx6BxEgs4BW6s+5yCEkGns6/K9hYjgKzwOh3OM8isLk8NJgMjIwFQVY/5cHil7jw3vOWBrlc7RAERGBqaqGHQOIkHngK1VOkcDEBkZmKpi0DmIBJ0DtlbpHA1AZGRgqopB5yASdA7YWqVzNACRkYGpKgadg0jQOWBr9WTOUX4RZvWrMQd+kaQ0ayWoJMMovkfVWnzfchZIOkbpVZ1dWLlxLsZcSeJ1Scbs2cdvZkBSZeloGSegGbzX9jL8fA7j+KHKEZ1j+ch2QLUxbY85R0z/QLqc41Ct0oJi39n3y5ZRMpQQUov+b4+qUtuqpkV6WUqyzCWM90RbjjFc/xXKSzHbr/60eQkoYzY76nossc7Ya28Z8hzyWIscUbvn2J1A2UnNI3bPMXaJi+Fzjtvt/fVy3bZlWar7ozb9Fseyjqwj0to8c5YWXUDgTOvOUV2elDXL5RydykuMJ9qb81jEgHM040p+YxF8nHP0zxTTOcpYc5xjswE6x1p1jvRpskvyHNnlgGfK2v9bXbYs31FaOhNkXHz1famlR1UZrmoDzVKrprRfeYnrN2+pDEtLZ8Ryvzq+pFNJdXlSquLtVSQdc8Zee0vPczB0K54AABbUSURBVMizVBsjKspXGOcopRr1DyTuHJthbIA/h7wnrUP+R6wLCJxpl3OstQupmRNL45AadZ3otL3v+jdFtHiAHkvX2UygrscVSwmH1qvfOYzju5Svtvc5pjlHrBpH8YD3HDOdoxrCIkk6slNVubJUnaN6jFHV8BpFdg7j+F7nWA0eYNFjiUXneEjnyETCO0fyHPIleQL5csDTyJGdo6cWj3aOnp1mo7IfZuC7DsOdozTgpjb7LJodm3ossX4054jVyRDnsP+2atsvWwLvc0izPpoHdI41+Q+d0tKToCXBFXSUMEVVqTC9NpRjsoOlIzuVG+eyhygn2J/P+X/NKR2jdxwVq9orkNtYL2nWlqye6K9yl5oZ7C8XAy7n+NjRqn8gPud4u96eX173bdeaNo7aQD4CAyIjA1NVDH4SkEjwk4Cwtepzjsvb9en525wNJGUgMjIwVcWgcxAJOgdsrTqd43L9+vQyZwNJGYiMDExVMegcRILOAVurPufgc8hBwFQVg85BJOgcsLVK52gAIiMDU1UMOgeRoHPA1qrPOT5NBCRlIDIyMFXFoHMQCToHbK16v7dqHiApA5GRgakqBp2DSNA5YGvV5xyEEDKNfV2+txARfIXH4XCOUX5lYXI4CRAZGZiqYnwp/h939PZI2XtseM8BW6t0jgYgMjIwVcWgcxAJOgdsrdI5GoDIyMBUFYPOQSToHLC1SudoACIjA1NVDDoHkaBzwNYqnaMBiIwMTFUx6BxEgs4BW6sncw7jl0TGvggzIKOUlLWXoYd8pWUzOZYW6TBpLvo4ekKU+Vad43uX/EtG059mjWl7+GrMdJbiq9NRZqcc4+1lzKdRM3iv7WXsW9bLLNkj6sp15yhC37lWD6XLOQ7VKpWFtLPvW1o6ZegCLGo7k2ZX1dyR9AfmUh25jFKbS+WaSa+95k7ZK3A1lktJtl/9qeUSKI8J9LIUT6z40XrtLZ3P5whEVJSvhnsOnFo9Gp9z3G7vr5frti3LUt0ftem3OJaFe3WWRRV9jZaW1/2lcfX00u8czWXI6BxZbgMJV5xju7SmXY2KcpfLNkfu6aV3jGk+updX4RmdA61Wj8bnHJhPk12+UzaWxw90juZacBfnKP8zYmwph6q+THekcR7VOaqzLo9MUfLQ38ui33Iu0HrtLZ2/rQpEVJSvdI6E0zuH8TKrXpY9CSoLTnpZrqcxJXZVus6qckl8+TLbqY7sqmP9t1XfR7vD1bgWZdNzrXo9INYLzQNivXqco4w1xznuW6tnco7NMHbAnUNp0TnCOQIyXKqqLeWO3t3oHOUxj+Qc5dQsuTKOTOegc/wwzpE8hzzdlvs9h9xYBJZ105Wg6oD21RbBOVyroWUulpwIcxGdw7iTOk3zynTdcwRyZRn5oF5oHhDr1eMcMZ8Y4hx3rNWTOcduGHd0jvX7f3Kz3DVbehKUjrbUKI/J+npleFUFdO4dO49J51tKEuZSsY3vHfMLbEkuxSauq7FUG2uJjWzptRrWBWOs8uVBvUrB9qzG7jmOO4/29zkQavVQfM7xdr09v7zu2641bRy1gXwEBkRGBqaqGPwkIJHgJwFha9XnHJe369PztzkbSMpAZGRgqopB5yASdA7YWnU6x+X69ellzgaSMhAZGZiqYtA5iASdA7ZWfc7B55CDgKkqBp2DSNA5YGuVztEAREYGpqoYdA4iQeeArVWfc3yaCEjKQGRkYKqKQecgEnQO2Fr1fm/VPEBSBiIjA1NVDDoHkaBzwNaqzzkIIWQa+7p8byEi+AqPw+Eco/zKwuRwEiAyMjBVxZg/l0fK3mMDec/xAV3hERFBoHM0AJGRgakqBsL1TzChc8DWKp2jAYiMDExVMRCuf4IJnQO2VukcDUBkZGCqioFw/RNM6BywtUrnaAAiIwNTVQyE659gQueArdWTOUfx7ZIfGsuDmy2jZFT1VHVWD6j+yKtK6q5/oaae0mx2zZGrIXR6TrSlxRixnJF9/OZkYzp/5F7by7BzVAdPQ8SUK87R7BujeaUrLYfS6xxL60obqyw98aWAMo+ltoEy0n8P3XGp0verw2YRy7576spiVcYx4j3RyqlXtDUjri1flMZv1lVM54/ca2/p+ZZ1RcnAyskUDl+4jVe6Uf/Rwv5bQO2TgO+vl+u+bWcofVndj236LY7uHM2KHJOg1rpZ3an6jTILuyrlWrVcSEpcxTmqL/udo1R76PWvjGkZ/4zO0T9TWOdoKjm7c6Scwzmyp8kqTyNfup8v2/krhbVVHwMSZHCO5toqHaNLNf5va7UVlqKzlJ1N81DnqKalzPOq5rMnonF8SaelDtPE6r0ss7PEwu+1twz/bVWP8mrEOzpH81o4lNM7h1IEys6YBBmcQ1JoOSamqjlaObIUsSrSNTsLQ9bxzutf6mUcX5+vRbml1xk9INZrrHOU7Y/hHGlEOscA51iF/2XoF2okQTbnKHcyYdKwsbWvHKRMhT6R8kflv8rI3iT3nOiqTukYb0T7+AHnMEa0RH+8XnQOJWLGSZzj43PIsyeQS/uHPodcSZlriZQ4wjm8O0ZV1VTow5ZmoBxQPdir3DgXZUZKxOHOYRw/4BzNXKGt5jN7jXUOV0RFeTUi3yEvOYdzbC83ysOqRw5JUDVo2pIesHxkTc532Z7t21VlQ0l6dKRxyn+lkVdn7Y79G9myxR4xNr4lImCvQG5jvUq19qz2/G3VEeeRf5XbFLZWnePtent+ed23XavSEt5APgIDIiMDU1UMhM9zEUz4SUDYWvU5x+Xt+vT8bc4GkjIQGRmYqmIgXP8EEzoHbK06neNy/fr0MmcDSRmIjAxMVTEQrn+CCZ0DtlZ9zsHnkIOAqSoGwvVPMKFzwNYqnaMBiIwMTFUxEK5/ggmdA7ZWfc7xaSIgKQORkYGpKgbC9U8woXPA1qr3e6vmAZIyEBkZmKpiIFz/BBM6B2yt+pyDEEKmsa/L9xYigq/wOBzOMcqvLEwOJwEiIwNTVYz5c3mk7D02kPccn9MtUfj5iA22VukcDUBkZGCqikHnIBJ0DthapXM0AJGRgakqBp2DSNA5YGuVztEAREYGpqoYdA4iQeeArVU6RwMQGRmYqmLQOYgEnQO2Vk/mHMtHskb7MZ0y9jGrwvRj0h2lY0xVNpryhZrlMdVcxZLmwniijafVkkzjObWMX1WlTKenl3F2j9Freznw+RzeMytHFJ2jOK2fpca0PeYcMf0D6XWO5hkaq2xJrr0y3PLxK771g3tkVEdTJO37u8JMqldb81woU7bkpydjXrwn2nLqV1W5fjVWR5DGtyRKHyfWSxrhMXrtLT3fsq609FWOds+RGoa0k5pH7J4jrH8gPue43d5fL9d9286H3hLe9Fuc5jItHeNFd47mYp0eoztHv6rqaJJz6Mo75bkwnuiyZbhzKCM0x5/gHJZwds2xmfavvxOcoxr9aOfYbIDOsVadQ3+a7KjnyLqeJrt+X4iVK3lJGJWgwPpbOke236nK7hyl51VbvKpi3Ol3Du2I0sm1F5uyMmbjlL30Kdv1SzNC7rW30Dn6/wN9EKd3jp59C2Odo9pxlKrqINIl5LqAD+VO178pYtMDmrGaR9r7etsRPCDW64zOsb91Mc05Ri1xMegcDYzvRacjpzvluiMtyi5h/c5RbZE871CQncM4/kHOEfgRmgfEetE5ms6RiYR3DvU55KOeQO56DvkdncO7o/vHWOcoNZRBXTvHgewcipX2OId3hbVHRPOAWK+TOof9t1XbftkSeJ9Dn91xnN45tpff3d53TDhB6VBLgXLM+rFSy149qtZimqW2Ump1P2txafOC8z6HZbTq+M0UBXSW58LSK6z5uF7Vk2jMc8/fVnnPoyW39vc5yluQJi7n+NjRqn8gPud4u96eX173bdeqtIQ3kI/AgMjIwFQVg58EJBL8JCBsrfqc4/J2fXr+NmcDSRmIjAxMVTHoHESCzgFbq07nuFy/Pr3M2UBSBiIjA1NVDDoHkaBzwNaqzzn4HHIQMFXFoHMQCToHbK3SORqAyMjAVBWDzkEk6Bywtepzjk8TAUkZiIwMTFUx6BxEgs4BW6ve762aB0jKQGRkYKqKQecgEnQO2Fr1OQchhExjX5fvLUQEX+FxOJxjlF9ZmBxOAkRGBqaqGPPn8kjZe2x4zwFbq3SOBiAyMjBVxaBzEAk6B2yt0jkagMjIwFQVg85BJOgcsLVK52gAIiMDU1UMOgeRoHPA1iqdowGIjAxMVTHoHESCzgFbqydzDuOXRMa+CNMuQ1GSHVDuSOJd2iyqVjUPVVXZMan445h/orWiH/ENsrGRq10Cs3uMXtvLId+Vu3zErlOIKDpHEeiz1Ji2x5wjlvmB9DrH4r8eepSlJ74UsLS+7r8UHJMhjVaeyHSnlB0W1jwX1fxIP7LsHIf3RLtOvT3iWtikcXxLwTdHrnaxRH/IXntLwDn08aVjjDTvOVLDkHZS84jdc4xd4mL4nON2e3+9XPdtux7Sl9X92GZcstGco1xQSufoX5ctLi416ougdMxxBE502TLEOZQR9PEtiep3Dumnei9L3KN7eRWe0Tk2G5jjHOVc0J1Df5qstD/5abL3co7SFarOkb7Mftqpyu4cVQ39qmLYT3SmUzK/pvhwaUnjSzqbhVcOm5aNMr5dv6X40XrtLaOcw1I5FqCcY8iMwox0jrGPIg/8MrpZiGXfngTpsdKX1UZlRjFV+tok6TS2HMeQddx1ogeWVjOWcozeSx//LB4Q69XjHGvNKgI65YiN9zl4zxF0jiG24XKOrP2OzlGuMlXnaA4VU+VyjmpL0+GOoMc5spbhzmEcP+AczS50jrX7b6voHMfhdI7Wc8iXQQ8h9z6HPN25o3OUQSXnGFHBDjHVoK6d4+i850h3hjuHcXyvc8SOP6MHxHp1OsdxC8Kod8i3/bLF6Bxjl7gYI51joG14neO72ztaehJUXbmy/ap/pGQt/arWYppLi1Jt9acubV7mn+iev3SMRdTPi7FXLJbUK5DbWK9SrT2rQ/4q1z67Jvb3OcpbkCaue45RMwrjc4636+355XXfdq3Zy7QxvIF8BEb/tMF8PRsgyRkCPwlIJPhJQNha9TnH5e369PxtzgaSMhAZGZiqYtA5iASdA7ZWnc5xuX59epmzgaQMREYGpqoYdA4iQeeArVWfc/A55CBgqopB5yASdA7YWqVzNACRkYGpKgadg0jQOWBr1eccnyYCkjIQGRmYqmLQOYgEnQO2Vr3fWzUPkJSByMjAVBWDzkEk6BywtepzDkIImca+Lt9biAi+wuNwOMcov7IwOZwEiIwMTFUx5s/lkbL32PCeA7ZW6RwNQGRkYKqKQecgEnQO2FqlczQAkZGBqSoGnYNI0Dlga5XO0QBERgamqhh0DiJB54CtVTpHAxAZGZiqYtA5iASdA7ZWT+YcxbdLfmgsD1NajpahHND/VYnaaStmXdVWzkXqVRVfzcDAuZTjW3JebTFG3LtXZbhaYiNXuwRiPUav7eXM78q1KNedY/nIdkC1MW2POUdM/0B6nWPxXw89ypZkySgFLKO/jl+SUQqohrDsxHCtfWW7dEzW0kxyOfcAgRPdPMZw/VcoL8VsP1xazZGrXQKxHqPX3jL8OeSd57F5z5EahrSTmkfsnmPsEhfD5xy32/vr5bpv2/WQvqzuxzb9FgfEOfR1+V7OkYmpJkHPiTK78rBOAifa3uKNeJBzNEe2H+/tZYl7dC+vwh7nKGPNcY7NBugca9U5jM8hH/JM2YGXt/TSgvFuUXIOaY0+yDkUk8hCN0utTF14pdZx/eYty3mzpTNiuS+NX9VgT3LZS1GizC62pqD12lvCzqFfmzHlK4xzlFKN+gcy3jm2czbzOeT2S25ggrJY0iqj/yiMyznW2oVkX9SUxiE1aj/RWXvf9W+KOLC0ymP0Xvr4Z/GAWK9+5zCO71K+2t7nmOYcYxc6L6e/5yjbx67Uzfc5ypdlUGVnuKp0pVuTnKQt1WPKoaQQzWNcIDuHZXxjErymS+dY6RzqO+TSS0jnUJ9Dbmk/6Dnk6Y5eFl5O5xw9O81GZT/M/Hcd7lJa3ryhreYze/U4R6xOhjiH/bdV237ZEnifQ5r10Yx0Dml/gnN8d/t6y/KR/gRVh5KClgL6T62iKoueatCPqQouj9STMGoue4hygroGi6qBf81pPK1DehlnZ+wVyG2sV6nWnucT/VXuUjOD/eViwOUcHzta9Q/E5xxv19vzy+u+7VqVlvAG8hEYEBkZmKpi8JOARIKfBIStVZ9zXN6uT8/f5mwgKQORkYGpKgadg0jQOWBr1ekcl+vXp5c5G0jKQGRkYKqKQecgEnQO2Fr1OQefQw4CpqoYdA4iQeeArVU6RwMQGRmYqmLQOYgEnQO2Vn3O8WkiICkDkZGBqSoGnYNI0Dlga9X7vVXzAEkZiIwMTFUx6BxEgs4BW6s+5yCEkGns6/K9hYjgKzwOh3OM8isLk8NJgMjIwFQVY/5cHil7jw3vOWBrlc7RAERGBqaqGHQOIkHngK1VOkcDEBkZmKpi0DmIBJ0DtlbpHA1AZGRgqopB5yASdA7YWqVzNACRkYGpKgadg0jQOWBr9WTOYfySSOlrIwNfJKnIKHfSuBZVSi9dqnQu7BqUiOVPbakKYjzRZYs+QW/EvXtVhqtFmY4Sy9IrFuuMvbaXPc8EjEU0VI7oHMtHtgOqjWl72DmaczyUXueoCh2iXg9X7uz7Zcu+HxBmdI4yXPlSb9GnZlSlDOuKaNEwCu+JDpx6S8RVPZvS+JaI0nnRczsq1hl77S0937Iei6goXw33HKlhSDupeYTvOZpzPBqfc9xu76+X675t6tMWqTGw6bc4yvKhHAbrHMZFv6nK0miJGE5XAOOJLluGO4cywnDn0BU2j+xfzb0z7enlVdjpHM3oRzjHZgPTnEPRfPfLNvI02e3lMvE55Mq+Xh89CRrrHOUgWYtdlaXRErEpYCCu67/McFVqIHtlR8lc9YjLRyxjVntJc9FPTWxNROu1twx0jjRvMeUrnSPh9M6xfrzqqkdWK6YnQemwyjmzrGjNi8erakhEi4ZRhJ0jfOWESysWsecKt6y/eiw6R9l+hHOsxUMA6RzranOOfX+ycyjtqWdI7qIzxzkkzQFVQyKe1zksmgeuOJaI4StcOeAsHhDrRed4OOdQn0O+vdyZ+RzydMe1lDcZ5RzNklV2XKqUQewRXQtxJwOdw6h2YGlZIsaucPvc9WPO2Gusc7giKsrXlnPYf1u17ZctP65zKI2HOsd3txdb0vb+BJXOsXykbLGQKVfUNv8qN3vpimjUMIqB73OU+l0Ry47NFmNEy8hSl2o4qZc9lp7Jgb1KtfY89/xtlWV81xlZPe9zlLcgTVzOEdM/EJ9zvF1vzy+v+7ZrTRv39qzRu4F8BAZERgamqhj8JCCR4CcBYWvV5xyXt+vT87c5G0jKQGRkYKqKQecgEnQO2Fp1Osfl+vXpZc4GkjIQGRmYqmLQOYgEnQO2Vn3OweeQg4CpKgadg0jQOWBrlc7RAERGBqaqGHQOIkHngK1Vn3N8mghIykBkZGCqikHnIBJ0Dtha9X5v1TxAUgYiIwNTVQw6B5Ggc8DWqs85CCFkGvu6fG8hIvgKD0Ixldw5hjgVIYQY0e85EMBXOB86ByHknuCvy/gK50PnIITcE/x1GV/hfOgchJB7gr8u4yucD52DEHJP8NdlfIXzoXMQQu7Jvi7jb/dOFRB0DkLIPbm7H9A5AtA5CCH35O5+QOcIQOcghBDig85BCCHEB52DEEKIDzoHIYQQH/8fFB6rbm4nB+kAAAAASUVORK5CYII=" alt="" /> select max(sal) from emp;--sal中最大值 <img src="" alt="" /> select min(sal)…

UE4中使用数据表(Data Table)

本文依据官方文档数据驱动游戏性元素整理而来。 做过游戏的应该都清楚,如果游戏稍微有点规模,那么使用数据驱动来做游戏一般是必不可少的一步,一般也就是策划通过本表的方式来解决。下面我们来简单说一下UE4中如何使用DataTable来实现数据驱动开发。 顾名思义,数据表就是以有意义且有用的方式将各种相关的数据归类的表格, 其中,数据字段可以是任何有效的 UObject 属性,包括资产引用。在设计师将 CSV 文件导入数据表前,程序员必须创建行容器以指示引擎如何解释数据。 这些数据表包含了列名,这些列名和基于代码的UStruct结构以及它的(子)变量一一对应, 这个UStruct的结构必须继承自FTableRowBase才可以被导入器辨识。 我们随便建了一张测试表(csv)如下所示: Id,HP,Icon,BlueprintKey 1,100,Texture2D’/Game/FirstPerson/Textures/Test.Test’,Class’/Game/FirstPerson/BP_DataTableTest.BP_DataTableTest_C’ 2,200,Texture2D’/Game/FirstPerson/Textures/Test.Test’,Class’/Game/FirstPerson/BP_DataTableTest.BP_DataTableTest_C’ 其中BP_DataTableTest是一个继承自AActor的一个蓝图类,BP_DataTableTest_C是实际生成的蓝图类。 对应的C++代码如下所示: /** 注意此结构体中的成员变量的名字要跟csv表中的相同,因为它是UE4里面是通过反射系统来实现数据的初始化的,当然名字不同也可以,但是它的元数据中的DisplayName就必须跟表中的字段值对应,具体可以参考DataTableCSV.cpp中的实现就可以了解。*/USTRUCT(BlueprintType)struct…